
THE MAGNETIC FIELD OF A SINGLE AXON

A Comparison of Theory and Experiment

BRADLEY J. ROTH AND JOHN P. WIKSWO, JR.
Department ofPhysics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235

ABSTRACT The magnetic field and the transmembrane action potential of a single nerve axon were measured
simultaneously. The volume conductor model was used to calculate the magnetic field from the measured action
potential, allowing comparison of the model predictions with the experimental data. After analyzing the experiment for
all systematic errors, we conclude that the shape of the magnetic field can be accurately predicted from the
transmembrane potential and, more importantly, the shape of the transmembrane potential can be calculated from the
magnetic field. The data are used to determine ri, the internal resistance per unit length of the axon, to be 19.3 ± 1.9 kQd
mm-', implying a value for the internal conductivity of 1.44 ± 0.33 Q-' m-'. Magnetic measurements are compared
with standard bioelectric techniques for studying nerve axons.

INTRODUCTION

An active nerve axon can be modeled with sufficient
accuracy to allow a detailed calculation of the associated
magnetic field. Therefore the single axon provides a sim-
ple, yet fundamentally important system from which we
can test our understanding of the relation between biomag-
netic and bioelectric fields. The magnetic field produced by
a propagating action potential has been calculated from
the transmembrane action potential using the volume
conductor model (1). The purpose of this paper is to verify
that calculation experimentally. To make an accurate
comparison between theory and experiment, we must be
careful to correct for all systematic errors present in the
data.
To test the volume conductor model it is necessary to

measure the transmembrane potential and the magnetic
field simultaneously. An experiment performed by Wik-
swo et al. (2) provided preliminary data from a lobster
axon, however the electric and magnetic signals were
recorded at different positions along the axon and no
quantitative comparisons were made between theory and
experiment. In the experiment reported here, these limita-
tions were overcome and improved instrumentation was
used (3-5).

GLOSSARY

a, the external conductivity of the bath
ai the internal conductivity of the axoplasm
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u the conduction velocity
a the axon radius
p the field point radius.

REVIEW OF THE VOLUME CONDUCTOR
MODEL

With some simplifying assumptions the magnetic field
produced by an axon can be calculated from the trans-
membrane potential using the volume conductor model.
This calculation is outlined in Appendix A and more fully
as described in reference 1. It requires solving Laplace's
equation for the electrical potential, then using Ohm's law
to find the current density and Ampere's law to find the
magnetic field. We assume that the axon is a uniform,
infinitely long cylindrical membrane immersed in an
unbounded conducting bath, the action potential propa-
gates with a uniform velocity down the axon, the conduct-
ing media are linear, isotropic, homogeneous, and quasi-
static, and the transmembrane potential is cylindrically
symmetric. The calculation requires that the transmem-
brane potential be given, along with the five parameters
given in the Glossary. Since these quantities are either
measured or obtained from the literature, the model has no
free parameters.
When the spatial length of the depolarization phase of

the action potential, A z, is much greater than the axon
radius, and when the resistance of the bath is small
compared with the internal resistance of the axon, the
results of the volume conductor model are easy to summa-
rize. The magnetic field is nearly independent of ,,, and is
proportional to ao1ra2, or inversely proportional to the
internal resistance of the axon per unit length, ri =
1 /,iira2.
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The dependence of the magnetic field on the field point
radius and the conduction velocity can be understood using
Ampere's law, which states that the magnetic field at a
distance p from the axon is proportional to the net current
passing through a circle of radius p around the axon. The
net current is the sum of the current inside the axon and the
fraction of the extracellular current passing through the
circle, referred to as the return current.
The spatial distribution of the current in the bath is

determined by the length of the depolarization phase of the
action potential. If the field point radius p is small, so that
p<<A z, then the contribution of the return current is
negligible, and the magnetic field is proportional to the
current inside the axon, which is in turn proportional to the
first derivative of the transmembrane potential. If the
measuring point is far from the nerve, p>>A z, the return
current will almost completely cancel the internal current,
so that the magnetic field will be smaller in amplitude and
broadened, containing much less high frequency informa-
tion. In this case a multipole expansion of the current
density is useful in approximating the magnetic field.
When p - A z no simple approximation is adequate and the
full power of the volume conductor model is required to
accurately calculate the magnetic field. Thus A z is a key
parameter as it sets the length scale of the problem. It is
determined by the rise time and conduction velocity of the
action potential. In this experiment A z z 3 mm. The
significance of all other distances is determined primarily
by their size relative to A z.
The calculation, as outlined in Appendix A, can be

inverted to compute the transmembrane potential from the
magnetic field. This computation is difficult, however,
because the equation giving the transmembrane potential
from the magnetic field strongly emphasizes the high
frequency components of the signal. Thus the inverse
calculation requires additional low-pass filtering if any
high frequency noise is present in the magnetic data.

DESCRIPTION OF THE EXPERIMENT

An experiment was performed to test the validity of the calculation of the
magnetic field using the volume conductor model. The data were obtained
from a medial giant axon of a crayfish. The crayfish was dissected in
oxygenated, circulating Van Harreveld's solution, Tris buffered to a pH
of 7.4, at 50C. The appendages and exoskeleton were removed, and the
muscle and chitin dorsal to the nerve bundle were cleared away. The ends
of the bundle were ligated, the chord was freed from peripheral nerve
fibers, and the entire nerve bundle was transferred to the experimental
apparatus.
A schematic diagram of the experiment is shown in Fig. 1. The nerve

was threaded through a toroidal pick-up coil to the fifth thoracic ganglion,
where the data were taken. The esophogeal connectives were placed in
separate insulated Plexiglas troughs, each containing a stimulating
electrode so that either medial giant axon could be stimulated individu-
ally. The distance from the toroid to the point of stimulation was -20 mm.
The nerve chord, as well as the toroid and stimulating electrodes, were
submerged in a bath of circulating Van Harreveld's solution at room
temperature.
The magnetic signal was sensed inductively using the toroidal pick-up

coil, which consisted of a ferrite core toroid wound with 65 evenly spaced

FIGURE 1 Schematic diagram of the experiment.

turns of 40 gauge (0.074 mm diameter) copper wire. The toroid was
threaded by both the axon and a single-turn calibration wire carrying a 1
juA, 0.5-ms square calibration pulse before each stimulation. The ferrite
core had a square cross section, with an inner radius of 1.05 mm, an outer
radius of 1.95 mm, and a width of 1.25 mm. It was insulated from the
bath by a coating of epoxy, so that the encapsulated coil had an inner
radius of 0.75 mm, an outer radius of 2.25 mm, and a width of 1.90 mm.
Fig. 2 summarizes the toroid geometry. The current induced in the
65-turn toroid winding was sensed by a room temperature, low-noise
amplifier (5), and a frequency compensator was used to correct for the
frequency response of the toroid and amplifier system (3). The signal was
then filtered (50 kHz low pass), digitized with an 8 us sampling period,
averaged, and displayed by a signal averager (model 1170; Nicolet
Instrument Corp., Madison, WI). Fig. 3 a shows a recording of the
digitized magnetic signal without averaging or digital filtering.
The transmembrane potential was recorded using a glass microelec-

trode filled with 1 M potassium chloride, having an impedance of -20
MQi. The microelectrode was inserted through the nerve bundle sheath
into the left medial giant axon 1 mm from the center of the toroid. Upon
insertion of the microelectrode at the beginning of the experiment and
upon the removal of the microelectrode at the end of the experiment a
resting potential of about -75 mV was observed. The microelectrode
signal was calibrated using a 10 mV, 0.3 ms square voltage pulse applied
to the bath through the ground wire. The frequency response of the
microelectrode was compromised to some extent by the requirement that
the axon was 6 mm below the surface of the bath, thereby producing a
distributed microelectrode tip capacitance. We compensated for this by
injecting a square pulse of current (0.5 ms, -1 nA) into the microelec-

epoxy.coating.. A

-wire-*

d T J W

df__ T s-7 7T77

FIGURE 2 Geometry of the toroid; c 1.05 mm, d = 1.95 mm, e = 1.25
mm, f= 0.75 mm, g = 2.25 mm, and h = 1.90 mm.
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FIGURE 3 (a) The measured magnetic field, (b) the measured trans-
membrane potential. In both cases no signal averaging was used.

trode and adjusting the negative capacitance circuit in the microelectrode
electrometer (model M701; World Precision Instruments, Inc., New
Haven, CT) until the best possible square voltage pulse was observed. In
this way we were able to extend the bandwidth of the microelectrode until
the leading edge of the pulse had a rise time of 50 As. The accuracy with
which both the microelectrode and the toroid output were corrected for
their frequency response provides one limitation to the accuracy of our
data. We estimate that we were able to perform the frequency compensa-
tion so that the shape and amplitude of the measured signals were
accurate to within 2%. The microelectrode signal was then filtered (50
kHz low pass), averaged and recorded by the Nicolet signal averager
(Nicolet Instrument Corp.). Fig. 3 b shows the transmembrane potential
with no averaging.
The potential difference between a tungsten electrode 200 Am from the

axon center and a silver-silver chloride ground electrode -30 mm from
the axon was also recorded. The tungsten electrode tip had a diameter of
100 Am and was 100 Am long, the rest of the electrode being insulated
from the bath. The electrode was held in place 2.5 mm from the toroid by

Experimental
B(p,z) a
pT

a micropositioner. The radial distance from the center of the axon to the
center of the exposed tungsten tip was measured by carefully placing the
electrode just in contact with the nerve bundle, and then backing the
electrode away until the desired field point was reached. The same 10-mV
pulse used to calibrate the microelectrode signal was also used for
calibration of the external potential. The signal was amplified by a low
noise pre-amplifier (model 113; EG & G Princeton Applied Research
Corp., Princeton, NJ), and then filtered (50 kHz low pass) and averaged
by the Nicolet signal averager (Nicolet Instrument Corp.)
The nerve was stimulated at a rate of about twice per second. The exact

frequency of stimulation (1.967 Hz) was timed so that 60-Hz noise and all
its odd harmonics would be absent in the averaged data (3). The strength
of the stimulus was just above threshold. Stimulus artifact could easily be
canceled from the magnetic signal (3).

COMPARISON OF THEORY AND DATA

Using the measured transmembrane potential and the
parameters a = 0.107 mm, u, = 1.70w-' m- 1, ae = 2.06 Q-'
m-I, u = 16.5 m/s and p = 1.48 mm, we obtain a
theoretical magnetic field that is compared with the mea-
sured magnetic field (512 averages) in Fig. 4. The signals
have been plotted with different vertical scales, so that the
shape of the trace can be compared more easily. One
discrepancy between theory and experiment is that the
fields have different amplitudes. The calculated signal has
a peak-to-peak amplitude 17% larger than the experimen-
tal data. There are also differences between the shapes of
the signals. The measured magnetic signal is narrower
than the theoretical prediction, the full width at half
maximum (FWHM) of the depolarization phase differing
by 12%. The ratio of the amplitude of the depolarization
phase to repolarization phase, or the asymmetry of the
signal, disagree by 3%, the measured data being more
asymmetric. The differences between the shape of the
calculated and measured magnetic fields were consistent
for several different axons, while the variation in the
amplitude was not as consistent. These discrepancies will
be examined in detail later in this paper.

Theoretical
B(p,z)
pT

Time, ms

FIGURE 4 A comparison of the measured magnetic field (solid) and that calculated from the transmembrane potential (dashed). The
measured signal represents 512 averages. Note the different vertical scales. a = 0.107 mm, aj = 1.70 Q' m-', r, = 2.06 Q1' m-', p = 1.48 mm,
u = 16.5 m/s.
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FIGURE 5 A comparison of the measured transmembrane potential (solid) and the transmembrane potential calculated from the magnetic
field (dashed). The measured signal represents 512 averages. Note the different vertical scales. a = 0.107 mm, aj = 1.70 Q-' m-', ,e - 2.06 Ql'
m- p= 1.48 mm, u = 16.5 m/s.

In Fig. 5 we also show the result of the inverse calcu-
lation, comparing the measured transmembrane potential
(512 averages) to that calculated from the magnetic field.
We perform the necessary low-pass filtering by multiply-
ing the Fourier transform of the calculated signal by a
Tukey window (k1 = 0.0 mm-', k2 = 4.0 mm-') (1). These
values of k, and k2 imply that there are no contributions to
the calculated transmembrane potential above 10 kHz. For
subsequent comparisons between theory and experiment
we shall concentrate on the magnetic field, not the trans-
membrane potential, to eliminate any effects due to low-
pass filtering.

SYSTEMATIC ERRORS IN THE
EXPERIMENT

There are several systematic errors in the experiment. We
shall examine each source of error individually, deter-
mining the change it will produce in the magnetic field.
Two criteria will be used to characterize the magnetic
signal: the peak-to-peak amplitude and the FWHM of the
depolarization phase.
We can organize the possible systematic errors into four

classes. First, the values of the parameters required by the
volume conductor model may be inaccurate. We must
determine how accurately each parameter is known, and
how their uncertainties propagate through the calculation
of the magnetic field. Second, the toroid does not measure
the magnetic field at a single point. We will examine the
averaging of the magnetic field over the cross section of the
ferrite core, and the averaging of the magnetic field over all
angles. A third class of errors is due to inhomogeneities in
the conductivity of the external medium. Three such
inhomogeneities are considered: the bounded bath, the
nerve bundle, and the toroid. Finally, there are several
remaining systematic errors, such as the deviation of the

axon geometry from the model assumptions, which are
harder to assess.

Parameters of the Volume Conductor
Model

The determination of the five parameters required by the
volume conductor model represents the major source of
error in the experiment. Of the five parameters, the model
is least sensitive to the external conductivity. We measured
the conductivity of the Van Harreveld's solution to be 2.06
± 0.10 Q'- m- by using a conductance meter (model 35;
Yellow Springs Instrument Co., Yellow Springs, OH). The
5% uncertainty in a, leads to only a 0.1% uncertainty in the
magnetic field.
We measured the conduction velocity to be u = 16.5 +

1.6 m/s, achieving 10% accuracy by using two toroids
separated by a known distance (6 mm). (We demonstrated
experimentally that the presence of one toroid had no
effect on the magnetic signal measured by the other for
toroid separations >3 mm). Implicit in our measurement is
the assumption that the conduction velocity is constant
along the length of the axon between the toroids. The 10%
uncertainty in the conduction velocity could account for
4% of the discrepancy in the peak-to-peak amplitude of the
theoretical and experimental signals. Also, of the five
parameters, the shape of the magnetic signal is most
sensitive to u; its uncertainty could lead to a 3% change in
the FWHM of the calculated magnetic field.
The value of the field point radius p was selected to be a

representative point inside the toroid, p = 1.48 ± 0.07 mm.
More will be said on how this value of p was determined
when systematic errors due to the toroid are discussed. The
5% uncertainty in p leads to an 8% uncertainty in the
peak-to-peak amplitude of the magnetic field and a 2%
change in the FWHM.
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The axon radius, a = 0.107 ± 0.011 mm, was measured
to 10% accuracy by observing it under a microscope at a
magnification of 120. The radius varied by -10% over
distances <1 mm, so an average radius was measured near
the microelectrode penetration. In this measurement we
assume that the axon has a circular cross section. The
magnetic field is proportional to the axon radius squared,
so a 10% uncertainty in the axon radius will produce a 20%
uncertainty in the peak-to-peak amplitude of the magnetic
signal. The change in the FWHM of the magnetic signal
will be <1%, the shape of the magnetic field being a very
weak function of a.
The internal conductivity is the only parameter that was

not directly measured. We obtained our value from Hodg-
kin and Rushton's work on a lobster axon (6), in which
they found ai = 1.7 + 0.5 Q-1 m-'. The 30% uncertainty
arose from random error in their experiment, and is an
expression of the difficulty encountered when determining
ai from subthreshold electrotonic measurements. In using
this value for our calculation we assume that the axoplasm
of lobsters and crayfish have similar conductivities. Wata-
nabe and Grundfest (7) independently estimate the inter-
nal conductivity of a crayfish lateral giant axon as -1.1 Q`
m'- , but they express skepticism about their accuracy. We
adopt 1.7 as our value of ai, realizing that this number
could be very inaccurate. We expect the true value actually
falls within 50% of our estimate, or ai = 1.70 ±0.85 Q'-
m-'. The magnetic field is proportional to ai, therefore
there is a corresponding 50% uncertainty in the peak-
to-peak amplitude of the magnetic signal. In determining
the shape of the magnetic signal, the internal conductivity
enters the equations of the volume conductor model in
much the same way as does the external conductivity.
Therefore, there is only a weak dependence of the shape of
the signal on ai, a 50% uncertainty in the internal conduc-
tivity producing <1% uncertainty in the FWHM of the
magnetic signal.
We can combine ai and a into one parameter, the axon's

internal resistance per unit length, r; = 16.4 ± 8.8 kQ
mm-'. We know ri and therefore the amplitude of the
calculated magnetic field to no better than 50%. Thus, the
17% discrepancy between the peak-to-peak amplitude of
our theoretical and measured magnetic fields can be totally
explained by uncertainty in the axon resistance. The shape
of the magnetic signal is insensitive to ri, so that even a 50%
uncertainty in r, produces a uncertainty in the shape
(FWHM) of the signal of <1%. If we had calculated the
magnetic field from the axial current, not the transmem-
brane potential, the strong dependence of the amplitude of
the magnetic field on ri would not have appeared, eliminat-
ing the dominant source of error in our experiment.
Magnetic measurements are therefore particularly well
suited for measuring currents in biological systems. If both
the magnetic field and the transmembrane potential are
measured, then we can use our model to predict r;, intro-
ducing one free parameter with which we can fit the

theoretical predictions to data. For this particular crayfish,
the peak-to-peak amplitude of the theoretical and experi-
mental magnetic fields are equal for ri = 19.3 ± 1.9 kQ2
mm-I, the 10% uncertainty being primarily due to the
uncertainty in p and u. It is often convenient to consider the
free parameter to be the internal conductivity, since this is
the only parameter not directly measured. Using a = 0.107
± 0.011 mm for the axon radius, we calculate a, to be 1.44
± 0.33 l-' m-'. The 23% uncertainty, primarily due to the
uncertainty in a, is somewhat smaller than would be
obtained from electrotonic measurements. A more precise
measurement of a would reduce the uncertainty in ai
significantly.
We see that uncertainties in the volume conductor

model parameters can account for many of the differences
between theory and experiment. To explain the remaining
discrepancies, we must look for systematic errors in the
experiment design.

Toroid Effects

The toroid that senses the magnetic field introduces two
systematic errors into the experiment because it does not
measure the magnetic field at a single point. Instead, it
averages the magnetic field over all angles 0 and over the
toroid cross section. The mutual inductance between the
toroid and the axon is negligible, and effects due to the
presence of the high permeability ferrite core should be
small.

Averaging Over All Angles 0. The magnetic
field we measure with our toroid, B(p, z), is the tangential
component Bo of the magnetic field averaged over all
angles

f_ Bo(p, 0, z)dO
Bi(p, z) f dOW (1)

We can gain some insight into how this averaging affects
our data by using Ampere's law, which relates the mea-
sured magnetic field to I,ncl1d, the net current passing
through the toroid. If there is cylindrical symmetry, then
Ampere's law reduces to (Appendix A)

(2)B(p, z) = Ienclosed ,2rp

so the magnetic field is simply proportional to Ienclosed If
there is not cylindrical symmetry, Ampere's law still
simplifies to a similar result, but in this case involving the
average magnetic field B

B(p, z) = 2-JLpenclosed -
2irp (3)

Therefore, we obtain the same result in a noncylindrically
symmetric case as we do in a cylindrically symmetric one if
we replace B by B. It follows that the magnetic field we

ROTH AND WIKswo The Magnetic Field ofa Single Axon 97



-I =O.Omm -
-1 =0.5mm - - -

-e=1.0mm.
2

Time (ms)
FIGURE 6 The magnetic field corrected for the axon being off-axis in the toroid. The distance off-axis, Q, is equal to 0.0, 0.5, and 1.0 mm for
the three traces. a = 0.107 mm, a, = 1.70 f-' m ', oa 2.06 (-' m-', p = 1.48 mm, u 16.5 m/s.

measure depends only on the net current threading the
toroid and not on how that current is distributed. Thus, the
calibration wire does not need to lie in the center of the
toroid, but can be placed along the inner radius of the
ferrite core; the total current threading the toroid is
independent of its position. (We experimentally verified
that the measured magnetic field is independent of the
position of the calibration wire in the toroid.) However, we
cannot assume that the nerve may also lie anywhere in the
toroid because a change in the position of the axon may

shift the external current density in such a way as to alter
the return current. Therefore if the axon did not lie exactly
on-axis in the toroid, then a systematic error may exist in
our data.
We show in Appendix B that the volume conductor

model can be extended to calculate the magnetic field due
to the axon being off-axis in the toroid. The results of this
calculation are shown in Fig. 6, where the average mag-
netic field is plotted for several values of the parameter Q,

the distance between the center of the axon and the center
of the toroid. For Q = 1 mm, which places the nerve near

the inner surface of the toroid core,' the peak-to-peak
amplitude of the magnetic signal increases by 17%. In our

experiment, the axon was supported by the nerve bundle so

that Q was small. We estimate R < 0.3 mm, implying that
the maximum error in the peak-to-peak amplitude due to
the axon being off-axis in the toroid is 2%, while the error

in the FWHM is <1%.

'For this theoretical calculation we ignore the epoxy coating around the
ferrite core so that the axon can be placed 1 mm from the toroid center.

Averaging Over the Toroid Cross Section. The
averaging of the magnetic field over the ferrite core cross

section represents a second systematic error introduced by
the toroid. Whenever the width or radius of the toroid
becomes comparable to or larger than the depolarization
length of the action potential, this averaging will change
the magnetic signal significantly. The volume conductor
model can again be extended to calculate the average field.
In Appendix C we show that the effect of averaging the
magnetic field over the toroid cross section can be approxi-
mated to within 1% by assigning an effective field point
radius, Peff. For the ferrite core used in this study, the inner
radius, c, was 1.05 mm, the outer radius, d, was 1.95 mm
and the width, e, was 1.25 mm (Fig. 2), giving Peff = 1.48
mm. It was this value of p that we used in Fig. 4 to
calculate the magnetic field from the transmembrane
potential. Since we can measure the toroid dimensions c, d,
and e carefully (to within 5%) before the experiment, we
feel confident in the accuracy of Peff to the same precision,
orpeff 1.48 ± 0.07 mm.

Inductive Effects. Through the assumption of
quasistationarity, the volume conductor model neglects
inductive effects. Plonsey and Heppner (8) have discussed
the conditions under which this approximation is valid.
However, their arguments do not consider the presence of
the high permeability toroid encircling the axon, in which
the magnetic field is magnified by a factor of 104 (A _ 104
As0). We shall show that inductive effects are still com-

pletely negligible even when the toroid is present.
To verify our claim we shall calculate the order of

magnitude of the inductively induced electric field.
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Because of the identical form of the two Maxwell's equa-
tions (ignoring displacement currents)

V x E=- - V x B=AJOit (4)

we can consider the toroid as a ring of changing magnetic
flux that will produce an electric field in exact analogy to
the production of a magnetic field by a current loop. The
magnetic field at the center of a circular current loop is
derived in many elementary texts on electricity and mag-
netism (9), and is

B =-. (5)
2p

By analogy, the electric field induced by the toroid is

;9*B

E=- , (6)2p

where 'IB is the magnetic flux through the toroid cross
section, and p is the toroid radius. The magnetic field
changes by 200 pT in 0.1Ims. The toroid cross section is 1
mm2 and the radius is -1 mm, so the electric field is

E (10')(200 pT)(1 mm2) -V (7)
(2)(0.1 ms)(1 mm) m

But the electric field already existing due to the presence of
electric charge is

E=_vlOOmY loV(8
E V4210mm 1 (8)1 mm m

We conclude that inductive effects are negligible to one
part in 107. Expressing our result in terms of circuit
elements instead of fields, we can say that the mutual
inductance between the toroid and the axon does not
significantly change the impedance of the nerve.

High Permeability Ferrite Core. As long as the
behavior of the high permeability material in the toroid is
linear and the magnetic field lines are always parallel to
the toroid surface, there will be no distortion of the
magnetic field such as crowding of the field lines into the
ferrite core. Since we deal with such small fields it is valid
to assume that the ferrite behaves linearly. If the toroid is
skewed with respect to the z-axis so that the plane of the
toroid is not perpendicular to the axis of the axon, then
additional boundary conditions for the normal and tangen-
tial components of the magnetic field at the ferrite surface
must be met and the field may be distorted. In our
experiment the plane of the toroid was positioned as nearly
perpendicular to the axis of the axon as possible. We
assume that a small misalignment of the toroid will not
significantly alter the measured signal.

Insulating,
Surface

CT=0 a=Cye

FIGURE 7 The geometry for an axon adjacent to an insulating plane
surface. The dotted circle represents the image axon.

Inhomogeneities in the External Medium
Another source of systematic error in the experiment is
inhomogeneities in the electrical conductivity of the exter-
nal medium. These inhomogeneities provide additional
boundary conditions in the original electrostatics boundary
value problem that change both the potential and the
magnetic field. To solve the new problem rigorously
requires starting with Laplace's equation. The systematic
errors of this type that we will discuss are the bounded
bath, the presence of a nerve bundle surrounding the axon,
and the presence of the insulated toroid in the external
medium.

Bounded External Bath. The volume conductor
model, as originally derived, assumes that the axon lies in
an unbounded external medium. Experiments, however,
must be performed in a bath of finite size. Our next goal is
to calculate the change of the magnetic field due to the
walls of the bath.
We consider a single insulating plane surface parallel to

the axon. The potential and its resulting magnetic field can
calculated exactly (Roth, B., and J. Wikwso, manuscript in
preparation). Qualitatively the plane surface can be
replaced by an image axon, as in Fig. 7. The image axon
does not thread the toroid, and will therefore only contrib-
ute to the return current, making the total magnetic field
both smaller and wider. The size of this effect is deter-
mined by s, the distance between the axon and its image.
As s becomes larger than the spatial length of the depolari-
zation phase of the action potential, the image axon's
contribution to the return current becomes negligible. Fig.
8 shows the predicted magnetic field for various values of s.
For s = 5.0 mm (2.5 mm from the axon to the edge of the
bath), the magnetic field will differ in amplitude from its
s = oo value by <2%.
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FIGURE 8 The magnetic field corrected for the axon being next to a plane surface. The distance between the axon and its image, s, is equal to
oo, 5, and 3 mm for the three traces. a = 0.107 mm, or = 1.70 l-1 m -', c, = 2.06 Q2' m ', p = 1.48 mm, u = 16.5 m/s.

In this experiment the nerve was supported in the bath
by several threads, so that the fluid could extend both
above and below the toroid. The bath was -40 mm wide,
100 mm long, and extended 10 mm below and 6 mm above
the axon. If we consider only the surface closest to the
axon, we calculate that the effect of the bath is to decrease
the magnetic field by -0.1%. By raising and lowering the
bath level, we found experimentally that for s >4 mm there
was no observable change in the magnetic field. We
therefore consider the systematic error introduced by the
bath surfaces to be negligible compared with other possible
errors in the experiment.

Anisotropic Nerve Bundle. We have been com-

paring our measured magnetic field to results predicted by
a model of an isolated axon. However, the medial giant
axon of the crayfish lies in a nerve bundle. We can extend
the volume conductor model to account for the presence of
the nerve bundle, but our ability to make reliable calcula-
tions is hampered by our lack of knowledge of the bundle
conductivity. We have some experimental evidence sug-

gesting that the conductivity is such that the bundle does
not significantly alter the magnetic field from that which
would be produced by an isolated axon. Nevertheless,
determining the effect of the nerve bundle remains one of
the most challenging questions we face in interpreting our

biomagnetic measurements.
When studying the external potential, Stegeman et al.

(10) modeled the nerve trunk as an axon surrounded by an

anisotropic bundle. We have developed a similar model to
calculate the magnetic field, but have included a third
layer representing a sheath enclosing the entire bundle and

have allowed the nerve axon to lie away from the center of
the bundle. The geometry and the definition of symbols are

shown in Fig. 9. The symbols a' and a,' represent the axial
and radial conductivities in the bundle, unequal in the
anisotropic case. Like the correction for the bath discussed
above, the potential and the magnetic field can both be
calculated analytically (1 1).

Because we do not have good values for t, a,, a', u,, or

the thickness of the sheath, it is difficult to compare theory
and experiment quantitatively. We can make some quali-
tative conclusions if we assume that a"/CZ <1 and a <oe.
Then the model predicts that both the external potential
and the magnetic field will be smaller and wider than the
field of an isolated axon, the amount of widening depend-
ing on the conductivities. The effect will be largest when
the axon lies at the center of the nerve bundle. As the axon
is moved away from the center, the effect of the bundle on

the magnetic field will be diminished. For a more quantita-
tive estimate of this effect we shall make some reasonable
estimates of the unknown parameters. We let a°z = 2.0 Ql
m-1and ag = 0.2 Q-' m-', so that rg/acz = 0.1. We assume

the sheath has a thickness of 10 ,um, and a conductivity of
0.2 Q-' m-'. We estimate that the bundle radius, b, is
0.625 mm,2 implying c = 0.635 mm. In the crayfish, the
giant axons are near the edge of the bundle, so we let t =
0.450 mm. The magnetic field calculated using these
parameters is shown in Fig. 10, along with the calculated
field produced by an isolated axon.

2The high precision is necessary to make the geometry self-consistent. It
in no way reflects the accuracy of our values.
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FIGURE 9 Geometry for an axon in an anisotropic, sheathed nerve
bundle. a, is the conductivity of the sheath. cr' and c,' are the axial and
radial conductivities of the bundle. b and c are the inner and outer radii of
the sheath. The distance from the center of the bundle to the center of the
axon is labeled t.

When comparing the predictions of the bundle model
with experiment, any change in the size of the magnetic
field will be masked by our uncertainty of a and ai. We
therefore must base all our conclusions on changes in the
shape of the signal. The bundle model predicts that the
measured magnetic signal should be wider than the predic-
tion for an isolated axon. In all data taken in this study we
observed no such widening. In fact, as seen in Fig. 4, we
consistently found the measured magnetic field to be
slightly narrower than the volume conductor model pre-

C-

N

_L
CD

dicted. We conclude that the conductivities of the bundle
and sheath must not differ substantially from the conduc-
tivity of the bath, so that they will have little effect on the
magnetic field. For this reason, we believe we can use our
model of an isolated axon to investigate a crayfish axon in a
nerve bundle.

Presence of the Toroid. Another important
inhomogeneity in the external conductivity is the toroid.
Current cannot flow through the epoxy layer encapsulating
the toroid and instead must flow either around the outside
of the toroid or through the hole in its center. Since the
toroid is quite close to the axon, we might expect a large
redistribution of the current density and possibly a signifi-
cant change in the magnetic field.
The natural way to account for the presence of the toroid

would be to again solve Laplace's equation, including the
additional boundary condition that the normal component
of the current density on the toroid surface is zero.
Unfortunately this electrostatics problem apparently does
not have an analytic solution, so we are forced to adopt a
numerical method. We have chosen an iterative procedure,
like that used by Gelernter and Swihart to calculate the
potential on the body surface due to electrical activity
within the heart (12).
To meet the additional boundary condition on the toroid

surface we place a charge density on the toroid that will
just cancel the normal component of the current density
that would exist if the toroid were not present. We account
for the interaction of these charges with each other by
iteration, finally obtaining a solution to Laplace's equation
that meets all the prescribed boundary conditions. Once

-bundle
,'%*- single axon

0 2
Time (ms)

FIGURE 10 The magnetic field of an axon off-axis in a sheathed, anisotropic nerve bundle. a - 0.107 mm, a;= 1.70 'm', -= 2.06 Q-'
Ip = 1.48 mm, u - 16.5 m/s-', a, - 0.2 Q0' m-', or = 2.0 Q' m-', a," - 0.2 Ql' m-', b = 0.625 mm, c = 0.635 mm, t - 0.45 mm.
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this potential is found, we can immediately calculate the
current density and the magnetic field (Roth, B., and J.
Wikswo, manuscript in preparation).
The results of these calculations indicate that the effect

of the toroid on the magnetic field depends strongly on the
dimensions of its epoxy coating (Fig. 2). Most of the
current in the bath flows around toroids having inner and
outer radii that are small compared with the depolarization
width of the action potential. This means there will be less
return current than if the toroid were absent, so the
magnetic field gets larger and narrower. If the toroid is
wide, it will appear as a tube encircling the axon. The
current density will be forced to flow through the toroid,
thus increasing the return current and making the mag-
netic field smaller and wider. Toroids of the geometry used
in this experiment have an intermediate effect. The current
density redistributes itself so that there is little change in
the return current or the magnetic field. Calculation shows
that the peak-to-peak amplitude of the magnetic field
increases by -1%, and the FWHM narrows by <1%.

Other Systematic Errors
There is a final class of systematic errors in this experiment
that are harder to quantify. These often deal with devia-
tions of the axon from our model assumptions. For
instance, the axon membrane was observed not to form a
perfect cylinder, but to have a radius that varied by 10%
over distances <1 mm. Since the magnetic field depends
strongly on the axon cross-sectional area, and since a
change in the area could lead to corresponding changes in
the conduction velocity and action potential shape, at some
point our model will cease to describe the axon accurately.
However, the magnetic signal was not observed to vary
when the axial position of the toroid was changed by a few
millimeters near the microelectrode penetration. This is
because the magnetic field represents a weighted average
of the current density over more than a millimeter along
the axon length, so that local random fluctuations in the
geometry are averaged out. We therefore consider small
deviations from cylindrical geometry to have a minor effect
on the magnetic field.

Since the active axon was not completely isolated from
the nerve bundle, there remains the possibility of more
than one axon contributing to the signal. The complete
dissection of a single axon was attempted several times, but
at least a few millimeters of the axon would have to be
isolated and the trauma of the dissection invariably killed
or severely damaged it. However, we are confident that
only one of the giant axons was firing. Only one branch of
the esophogeal connective was stimulated and changes in
stimulus strength, duration, and polarity always gave the
same all-or-none response. We were able to determine
which axon was producing this signal by observing under a
microscope which of the four giant axons had been pene-
trated by the microelectrode. If there are small axons that
fire if and only if a medial giant axon also fires (13) their

contribution may also be present in the magnetic signal,
but because of their much smaller radius, their contribu-
tion would be minimal. For these reasons, and because of
the good agreement between theory and experiment, we
conclude that both the magnetic and electric signals are
due only to a single medial giant axon.
The volume conductor model assumes that the electric

and magnetic fields are quasistationary. One aspect of this
assumption has been investigated when we showed that the
inductive contribution to the electric field is negligible.
Plonsey and Heppner (8) made a careful analysis of
quasistationarity and conclude that deviations from this
assumption will first appear as capacitive effects. It is
interesting to compare the error made in ignoring capaci-
tive effects to other errors we have considered.

Capacitive effects are negligible if

«<< 1, (9)

where E0 = 8.9 x 10-'2 s U-1 m-' is the permittivity of free
space, w is an angular frequency, and K and a are the
dielectric constant and the conductivity of the conducting
medium. Angular frequencies from 0 to -6 x IO' radians
s-' contribute to the action potential, corresponding to
frequencies from 0 to 10 kHz. To evaluate the left-hand
side of Eq. 9, we must know a and K for the crayfish nerve
axoplasm. We will use a = 1 Q'-l m' as a lower bound for
the conductivity. The dielectric constant should be similar
to that of water, K = 80. We then find that wfoK/U has its
largest value when c is large, and that for c = 6 x 104
radians s-' (10 kHz)

W,EC (6 x 104 radians s-1)(8.9 x 10-12 s Q-m-1)(80)
a (1 -m-)

-4x10-5. (10)

Capacitive effects will therefore be on the order of 0.01%
or less. Even if we have incorrectly estimated K by as much
as an order of magnitude by ignoring any contribution
from structure inside the axon, capacitive effects should
still be negligible in this experiment.
As discussed in reference 1, there is an error introduced

by considering the potential measured by the microelec-
trode to be the transmembrane potential instead of the
potential difference between the inside of the axon and a
distant ground. According to the results of our single axon
model, the transmembrane potential is slightly larger and
narrower than the potential measured by the microelec-
trode. There is a corresponding 1% error in the peak-
to-peak amplitude of the magnetic field calculated from
the microelectrode potential and less than a 1% narrowing
of the FWHM.
A final source of error is the possibility that penetration

by the microelectrode may damage the axon. Presumably
this would be local damage and therefore effect primarily
the microelectrode signal. Transmembrane potential sig-
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nals with unusually small amplitudes and long repolariza-
tion phases, or that varied with time while the magnetic
signal stayed constant, were attributed to poor microelec-
trode penetration and were not considered in the analysis of
the data. We do not know if damage due to the microelec-
trode is absent or just minimized in our best penetrations.
This source of systematic error of course disappears if
magnetic measurements alone are used to study the nerve.
A list summarizing the possible sources of error in this

experiment follows this section. The largest uncertainty is
in our knowledge of the axon radius and the internal
conductivity, or the internal resistance per unit length ri. If
we use the data to determine r1, we eliminate the dominant
source of error in the experiment. By computing the square
root of the sum of the squares of the remaining uncertain-
ties, we find that the uncertainty in the amplitude of the
magnetic field, and therefore the uncertainty in r;, is 10%,
while the uncertainty in the FWHM of the magnetic signal
is 4%. Of the sources of error that we were not able to
quantify, the most significant is probably the presence of
the nerve bundle, followed by local damage due to the
microelectrode and the variation of the conduction velocity
over the length of the axon between the toroids. We note
that the quoted uncertainty in r, does not include any
contribution from these last three sources of error because
we were not able to quantify their effect.
The overall shape of the magnetic signal, in particular

the asymmetry of the depolarization and repolarization
peaks, agrees quite well between theory and experiment.
However, the 12% difference of the FWHM between the
measured and calculated magnetic signals has not yet been
entirely explained. Evidence that the source of this discrep-
ancy may lie in the electric, not the magnetic, data is found
by examining the external potential.

Summary of Error Sources

The two percentages given represent the uncertainty that
the source of error introduces in the peak-to-peak ampli-

4ie(P,Z)
Expel

uV

tude and the width (FWHM of the depolarization phase)
of the magnetic field.

Major Sources ofError.

o UNCERTAINTY IN THE INTERNAL CONDUCTIVITY 50%,
<1%. This value was taken from the literature. The
magnetic field, as calculated from the transmembrane
potential, is proportional to 0i.

o UNCERTAINTY IN THE AXON RADIUS 20%, <1%. The
error arose from a 10% uncertainty in the measurement of
the axon radius, a. The magnetic field, as calculated from
the transmembrane potential, is proportional to a2.

Small Sources ofError.

o UNCERTAINTY IN THE EFFECTIVE RADIUS OF THE TO-
ROID 8%, 2%. The error is due to a 5% uncertainty in the
toroid core dimensions. This is the largest source of error
contributing to the value of r; predicted by the data.

o UNCERTAINTY IN THE CONDUCTION VELOCITY 4%, 3%.
The origin of the error is a 10% uncertainty in the
measured conduction velocity. Of the five volume conduc-
tor model parameters, the shape of the calculated magnetic
field is most sensitive to the conduction velocity.

o AXON OFF-AXIS IN THE TOROID 2%, <1%. Makes the
measured magnetic signal larger, narrower.

El INACCURATE FREQUENCY COMPENSATION 2%, 2%.
Changes both the size and shape of the measured magnetic
field and the measured transmembrane potential.

o REDISTRIBUTION OF THE CURRENT DENSITY DUE TO THE
TOROID 1%, <1%. For our toroid, makes the measured
magnetic signal larger and narrower.

Time, ms
FIGURE 11 The external potential calculated from the transmembrane potential (dotted), calculated from the magnetic field (dashed), and
measured (solid).
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o CONSIDERING THE MICROELECTRODE SIGNAL AS A
DIRECT MEASUREMENT OF THE TRANSMEMBRANE POTEN-
TIAL 1%, <1%. Makes the calculated magnetic field
larger and narrower.

Negligible Sources ofError.

O UNCERTAINTY IN THE EXTERNAL CONDUCTIVITY
0.1%, 0.1%.

o EFFECT DUE TO THE BOUNDARIES OF THE BATH 0.1%,
0.1%. Makes the measured magnetic field smaller and
narrower.

O CAPACITIVEEFFECTS <10 2%, <10-2%.

o INDUCTIVEEFFECTS <10 5%, <lo-,%.

Sources ofError that We Believe Are Small but
whose Effects Are Difficult to Quantify.

o THE PRESENCE OF THE NERVE BUNDLE AROUND THE

AXON ??%. Makes the measured magnetic signal smaller
and wider. A knowledge of the bundle conductivity is
required to quantify this effect.

o LOCAL DAMAGE BY THE MICROELECTRODE ? ?%.
Changes the measured transmembrane potential.

o VARIATION OF THE AXON RADIUS AND CONDUCTION VE-

LOCITY ??%.

o AXON NOT PERPENDICULAR TO THE PLANE OF THE TO-
ROID ??%. Must consider boundary conditions for the
magnetic field at the ferrite surface.

o MORE THAN ONE AXON CONTRIBUTING TO THE SIG-
NAL ??%.

EXTERNAL POTENTIAL

An additional observation that sheds some light on the
relationship between the magnetic field, B, and the trans-
membrane potential, 4m, is their relationship to the mea-
sured external electric signal, 4%. Using the volume con-
ductor model (1), we can calculate be from both the
magnetic field and the transmembrane potential. The
results of these calculations and the measured 4k are shown
in Fig. 11. Again, the vertical scales are adjusted so that
the signals all have the same peak-to-peak amplitude. The
major difference between the shapes of the signals is the
relative size of the three phases. In this respect, the
external potential calculated from the magnetic field
matches the measured external potential much better than
the external potential calculated from the transmembrane
potential. Thus a third, independent measurement agrees

better with the magnetic than the transmembrane poten-
tial data. The difference seems to be in the second phase of
the signal, which is smaller for be calculated from the
transmembrane potential. Since 4b is qualitatively the
second derivative of 4pm, this means that the curvature at
the maximum of the microelectrode signal is not as large as
the other two signals predict, i.e., (m really has a narrower
peak than the transmembrane potential data suggests. The
effect may be due to the limited bandwidth of the micro-
electrode, which could not be totally compensated for by
negative capacitance, or could be due to membrane dam-
age from the microelectrode penetration. If this hypothesis
is correct, then we are led to the conclusion that in this
experiment magnetic techniques may provide a better
measurement of the shape of the transmembrane action
potential than do microelectrodes!

Since b and B are both proportional to ri, we expect that
the uncertainty in the axon resistance will play no role in
the comparison of the relative amplitudes of the external
potential calculated from the magnetic field and the
measured external potential. The two signals have peak-
to-peak amplitudes that differ by 21%, the discrepancy
probably being due to the uncertainty in the location of the
field point for (%. The difference in the peak-to-peak
amplitude of the be data and the external potential calcu-
lated from the transmembrane potential is 46%.
The analysis of the external potential completes our

comparison of the volume conductor model predictions to
experimental data. Although there are some small discrep-
ancies still remaining, we believe that the results of this
comparison verify the usefulness of this model, and that
this paper, along with reference 1, provide a complete and
accurate description of the magnetic field of a single axon.
To our knowledge, we have considered every source of
error that could enter our data, not only for the purpose of
placing error bounds on our value for r,, but more impor-
tantly to determine the accuracy that is obtainable with
our relatively new biomagnetic technique. In the last
section of this paper we compare the use of this magnetic
technique to other experimental methods commonly used
in the study of nerve axons.

COMPARISON OF BIOMAGNETIC AND
BIOELECTRIC MEASUREMENTS

To conclude our discussion, we shall compare the relative
merits of measuring the extracellular magnetic field to the
standard electrophysiological measurements of the trans-
membrane and external potentials. Any of these three
quantities can be measured and therefore serve as the basis
for a study of nerve behavior. By surveying the experimen-
tal and computational advantages and disadvantages asso-
ciated with each field, we hope to make clear which is most
appropriate for any particular investigation.
The relationships between the magnetic field, B, the

transmembrane potential, (m, and the external potential,
be, are summarized schematically by the triangle in Fig.
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FIGURE 12 A schematic drawing demonstrating the relationship
between the transmembrane potential 4Im, the magnetic field B, and the
external potential 4I'. A solid line indicates a forward calculation, while a
dashed line indicates an inverse calculation.

12. Each vertex of the triangle represents a measurable
bioelectric or biomagnetic field, and each arrow directed
from one of the fields to another represents a possible
calculation with the volume conductor model. There are
two types of arrows, solid and dashed, representing forward
and inverse calculations, respectively. By a forward calcu-
lation we mean a computation in which the field point of
the calculated signal, Pcic, is farther from the axon than the
field point of the measured signal, Pmcas, or Pcaic > Pmeas,
Conversely, an inverse calculation is one in which Pca <
p,. All else being equal, an inverse calculation will
always be more difficult than a forward calculation
because the inverse calculation has the property of exag-
gerating the high frequency noise present in the measured
data. This is most easily understood by inspecting the filter
functions of the volume conductor model (see Appendix
A). In a forward calculation the filter function goes to zero
as the spatial frequency k becomes large, so that the
calculated signal contains very little of the high frequency
noise that was present in the data. The filter function for an
inverse problem goes to infinity at large k, implying that
high frequency noise in the measured signal will be ampli-
fied in the calculated field. From a computational point of
view, it is advantageous to make forward calculations.
Unfortunately, it is the inverse calculations that are usually
of most interest. Calculation of the transmembrane poten-
tial from either the magnetic field or the external potential
is an inverse calculation and, in our experiment, the
calculation of 4e from B is also.
The difficulty of each computation is written next to its

corresponding arrow in Fig. 12. As expected, the inverse
calculation of computing 4m from either B or 4b is more
difficult than its forward counterpart. However, the
inverse calculation of be from B is described as being easier
than the corresponding forward calculation. Clearly there
must be another factor in determining which calculation
can be performed with least difficulty. We found in our
study that calculations that qualitatively represent an
integration are more difficult than those that represent a
differentiation. Again, we can see why this is true by

looking at the filter functions. Those filter functions that
correspond to integrations have the property of rising to
infinity as the spatial frequency goes to zero. So, just as an
inverse calculation tends to exaggerate high frequency
noise in the data, an integration will tend to exaggerate low
frequency noise. CalculatingC from B and B from cf, both
represent integrations and therefore are difficult to per-
form accurately. Calculating (km from 4b requires two
integrations, making this computation yet harder to carry
out.

These ideas are summarized in Table I, in which each
row corresponds to one of the six possible computations.
Those computations representing integrations have an
asterisk in the column labeled "difficulty at low frequen-
cies," while those representing inverse calculations have an
asterisk in the column labeled "difficulty at high frequen-
cies." The 4S to (m calculation has two asterisks in the first
column because it requires two integrations. The difficulty
of each calculation can be estimated by the number of
asterisks in that row. The rows corresponding to the
calculations of either B or be from IPM contain no asterisks,
and these calculations are very easy. The rows associated
with the calculations of B from Sk or 4P from B each have
one asterisk, and are of moderate difficulty. We found that
the difficulties associated with integrations were slightly
more severe than the difficulties associated with inverse
calculations, so that calculating (e, from B is moderately
easy, while calculating B from 4b is moderately hard. The
row containing the calculation of 4bm from B (Fig. 5) has
asterisks in both columns, so it is a quite difficult calcu-
lation to perform and requires very clean magnetic data.
However, the calculation of 4)m from be has three asterisks
in its row, so it is extremely difficult. This computation
places such demands on the quality of the 4e data that
reliable calculations of(m from 4Pe are almost impossible. It
is unfortunate that the two calculations of most interest,
calculating bm from measurements of either B or 4b made
outside the axon, are the two most difficult to perform.
However, a calculation of the transmembrane potential is

TABLE I
SUMMARY OF CALCULATIONS

SHOWN IN FIG. 12

Calculation Difficulty at Difficulty at Calculated field is
low frequencies high frequencies proportional to:

4S -B aria2Sm8 ,effa2

aea

B-sC * 1

Ole

BA'm * * 1

Se~~+m ** * ae
¢ara
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less difficult when based on the magnetic field than when
based on the external potential. This fact represents a
major computational advantage of extracellular magnetic
measurements over extracellular electric measurements.

Table I also indicates which parameters in the volume
conductor model are most important in determining the
amplitude of the fields; the calculated signal is propor-
tional to the factor in column 3. Determination of the axon
internal resistance, r; = 1/(ir a2oi), is often of interest.
Inspection of Table I shows that this quantity can be
obtained most directly by measuring both 4m and B and
fitting the theory and experiment to evaluate ri.

Fig. 13 contains plots of the three measured and the six
calculated fields. Forward calculations are marked by an
arrow containing a small f, while inverse calculations are
designated by an i. Apparently there is some low frequency
noise in the external electric data because the magnetic
field calculated from it has an offset occurring between the
beginning and end of the signal. This is even more
pronounced in the transmembrane potential calculated
from the external potential. Note that the transmembrane
and external potentials as calculated from the magnetic
field (panels b and h) more closely resemble the corre-
sponding measured signals (panels a and i) than do the
potentials calculated from the electric data (panels c and
g). This may in part reflect the relative experience of the
investigators in using magnetic and external electric tech-
niques, but the difference, particularly in panel c, is also

due to factors summarized in Table I, which imply that the
calculation of the transmembrane potential from the exter-
nal potential is extremely difficult.

If only computational factors are considered, one would
always choose to measure the transmembrane potential
and compute the other fields from it. However, experimen-
tal factors often make the direct measurement of 4~m with
microelectrodes undesirable. The primary disadvantages
of microelectrode measurements are that they require
penetration of the axon and that they may not provide a
stable signal over several hours. Measurements of the
magnetic field or the external potential are both noninva-
sive techniques and share the common attributes that they
do not puncture the axon and provide stable and reproduc-
ible results. They also have similar signal-to-noise ratios
(both of which are lower than the signal-to-noise ratio of
microelectrode measurements), and both fall off rapidly
away from the axon, so they require the field point to be
known precisely. Both the toroid and external microelec-
trodes exhibit a decreased signal-to-noise ratio at low
frequencies and the toroid is insensitive to steady currents.
A toroid has the advantage that its dimensions are fixed
and can be measured before an experiment, while a
tungsten electrode has to be carefully located with a
micropositioner and may move while taking data. The
electric potential measurement that would most closely
resemble our magnetic technique would be to measure the
external potential using a loop electrode encircling the
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FIGURE 13 a, e, and i are plots of the measured transmembrane potential, magnetic field, and external potential. The other six panels
contain fields calculated using the volume conductor model. An arrow containing a smallfindicates a forward calculation, while a small i
indicates an inverse calculation.
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nerve. However, magnetic techniques would still have the
additional practical advantage that the ferrite core is
encapsulated in a layer of insulation so that there is no
electrical connection between the toroid and the nerve, as
there must be with a metal electrode. Also, the toroids are
more robust and less easily damaged than metal electrodes.
Finally, magnetic measurements with toroids have been
found to be less sensitive to stimulus artifact.
At present, magnetic measurements have the disadvan-

tage over electric techniques in that they require the
complete dissection of at least one end of the axon so that it
may be threaded through the toroid. However, openable
clip-on toroids are now being developed that will eliminate
this requirement (14; Henry, P., F. Gielen, and J. Wikswo,
manuscript in preparation). Also, magnetic techniques
cannot yet match external electric or microelectrode mea-
surements for spatial resolution. The development of small-
er, thinner toroids should be possible, and will increase the
ability of magnetic techniques to look at higher frequency
and more slowly propagating events.

FIGURE 14 The geometry of a nerve axon.

where a and ,B are defined as

a(IkIa) = - (1 + y(IkIa)),

I(Ikla) = 1 + (Ik )'

with y given by

y(Ik la) cKr ( k1 Ia)(I( kI a)

CONCLUSION

The results of this paper indicate that the volume conduc-
tor model allows the magnetic field of a nerve axon to be
accurately calculated from the transmembrane potential,
provided the resistance of the axon is known. Perhaps more
importantly, this procedure can be inverted to calculate the
transmembrane potential from the measured magnetic
field without penetrating the axon. If the intracellular
current is of interest, the magnetic measurements provide
this information directly. Thus, if the resistance of the axon
is unknown, it can be obtained by measuring both the
magnetic field and the transmembrane potential, yielding
values of ri more precise than obtained by subthreshold
electrotonic measurements. After considering all sources of
error that could enter our measurements, we believe that
the magnetic field can be measured with sufficient ease
and accuracy for magnetic techniques to be viewed as a
tool that is comparable and complementary to microelec-
trodes and external potential measurements for use in the
study of electrically active tissue.

APPENDIX A

A nerve axon can be modeled as a cylindrical, infinitely long membrane of
radius a separating the intracellular space with conductivity from the
extracellular space with conductivity a. (Fig. 14). An action potential
propagating down the axon with conduction velocity u is described by the
transmembrane potential !m(Z). Given this transmembrane potential the
potential inside and outside the axon is found by solving Laplace's
equation. The results are

oi(p, k) = I(kl(lkI1p )k 0X(k), (A 1 )

Ik(0kK(k (Al)
0.(p, k) =z kIaKO(jkka) (A2)

IO, II, Ko, and K1 are modified Bessel functions, km(k) is the Fourier
transform of the transmembrane potential, defined as

(A6))m(k) = m(z)e+ikzdz,
k is the spatial frequency, and Oj(p, k) and 4'(p, k) are the Fourier
transforms of the internal and external potentials.
We have extended this calculation to include the magnetic field (1).

Ampere's law states that the line integral of the magnetic field around a
closed path is proportional to the net current through that path, I,,I.w

B - dl = IO ..nclc,d. (A7)
For cylindrically symmetric current distributions, it is convenient to take
the line integral path as a circle of radius p, centered on and perpendicular
to the axis of the nerve. Then Ampere's law reduces to

B = '
encIoscd4irp (A8)

To find I we make use of Ohm's law and differentiate the Fourier
transforms of the potentials given in Eqs. Al and A2 to find the Fourier
transforms of the axial current density

J11 (p, k) = i1kfiki(p, k),

JZ (p, k) = io,,k4,(p, k).

(A9)

(AIO)
Next we must integrate the current density over the area bounded by our
line integral path. The radial integration makes use of the Bessel function
relationships

f Io(x)xdx = xI,(x),

f Ko(x)xdx = -xK,(x).

(A1)

(A12)
After performing the integration to find I,,w,, we use Eq. A8 to find the
Fourier transform of the magnetic field

-B
k) iAosk oiaI 1(I kI a)

plkl tj(IkIa)Io(Ikja) + a(Ika) Ko(jkla)

[aK1( Ik I a) -pK,( I kI p)]J m(k). (A13)
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(A5)
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This is our final result, the Fourier transform of the magnetic field written
in terms of the Fourier transform of the transmembrane potential.

Eq. Al 3 determines one Fourier transform by multiplying another
Fourier transform by a function of the frequency (k). This function can
thus be thought of as a filter applied to the transmembrane potential to
obtain the magnetic field. We call this function the filter function relating
the two fields. Note that if Eq. A13 is divided on both sides by the filter
function, then we have a relationship that represents the solution to the
inverse problem of calculating 4.m from S.

APPENDIX B

The volume conductor model can be extended to calculate the change in
the magnetic field due to an axon being off-axis in the toroid.

Fig. 15 shows the geometry used to investigate the magnetic field of an
axon off-axis a distance Q from the center of the toroid. Because the
measured magnetic field depends only on the net current threading the
toroid, the magnetic field due to the total internal current Bjtot is
unchanged as the axon is moved off the z-axis. We can use Ampere's law
to calculate the magnetic field due to the return current. The Fourier
transform of the external potential, 0.(k), can be written in terms of
,km(k), the Fourier transform of the transmembrane potential and modi-
fied Bessel functions (see Appendix A)

'OAP2, k)
= Ko( I1k P2) 4

m(k), (Bi)
Ia(l k a)Ko( k I a)

where

p2 =p2 + -2_ 2pQ cos 0. (B2)

By differentiation of the external potential with respect to z, and by using
the Bessel function relations

Ko(IkI p2 + 92 - 2p9cos6) =Ko(IkQ)Io(IkIp)
+ 2 Tcos m0 Km(I k|I)Im(| kIp), p < 9 (B3)

m-i

Ko( Ik p2 + 92 - 2pQ cos0) = Io(I k 19)Ko( I kI p)

+ 2 cos m0 m(I kI )Km( I kI p), p >9 (B4)
rn-l

we can calculate Je, the external axial current density, as a function of p
and 0.
From Ampere's law we get !Bt, the transform of the magnetic field due

to the return current averaged over all angles, by integrating Je over the

area between the axon and the field point radius

sret(p, 9, k) =
AO U2 Jz (p, 0, Q, k)pdpd027rp 0 o

- jf 2 fra J(p2, k)p2dp2d0. (B5)
2irp )o oB5

Orthogonality of the trigonometric functions insures that only the m = 0
terms survive the integration over 0. We then can use the Bessel function
relations given in Eqs. Al and Al 2 to integrate radially, which after
some algebra reduces to

SBt(p, 9, k) - iic=
I k pa( I kI a)Ko( I k I a)

* {aKj( k a) - pIo( k R)Kl( k P)Iim(k). (B6)

By adding !8, to the magnetic field due to the total internal current Sj'0',
and by using a relation derived from the Wronskian, we find that the
Fourier transform of the total magnetic field due to an axon a distance 9
off-axis in a toroid can be written

fB(p, 9, k) = IO( k Q)B(p, k), (B7)

where S(p,k) is the Fourier transform of the total magnetic field when
the axon is at the center of the toroid, given in Appendix A by Eq. Al3.3
When 9 goes to zero, Io( k 1Q) goes to one, recovering our original result,
and for k 1Q << 1 the nerve that is off-axis produces a small change in the
magnetic field. This condition is equivalent to requiring that 9 be much
smaller than the spatial width of the depolarization phase of the action
potential.
We note that the simple form of the correction in Eq. B7 is entirely due

to our toroid geometry. If our toroids were not cylindrically symmetric,
the measured magnetic field would be much harder to calculate.

APPENDIX C

The magnetic field averaged over the toroid cross section can be
calculated using the volume conductor model. The equation relating the
Fourier transform of the magnetic field to the Fourier transform of the
transmembrane potential, given by Eq. 36 in reference 1, is4

3(p, k) = ittoakI( k|Ia)K,(|kIp)

Ik I a) a(1 kI a)Im(") (C)

Using the Bessel function relationship

f K,(x)dx = -Ko(x) (C2)

FIGURE 15 The geometry of an axon off-axis in a toroid.

we can integrate the magnetic field over the toroid dimensions to yield 3
(c, d, e, k), the transform of the magnetic field averaged over the toroid

3In reference 1, !Bi,,, is defined by Eq. 43, B(p, k) by Eq. 45, and the
Wronskian relationship is given in Eq. 46.

4Eq. Cl is exactly equivalent to Eq. Al 3, the filter function has just been
rearranged (see reference 1). We choose this form of the filter function
because it shows more clearly the consequences of integrating over the
cross section of the toroid.
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cross section

SB(c, d, e, k) =iuoakI(jkIa){K(kc- (kI)
Ik l (d -c)

.ke[sin!~~
|ke | ,(k a) a( I k I a)l ()

2 (C3)

where c is the core inner diameter, d the outer diameter, and e the width
(Fig. 2). The factor containing sin(ke/2) represents the correction for the
finite width of the toroid. It always decreases the high frequency content
of the signal. The factor involving a difference of modified Bessel
functions in Eq. C3 replaces K( k p) in Eq. C I and eliminates the need
of choosing one representative value ofp in the toroid at which to calculate
the magnetic field. However, if the toroid is not too large, we can find a
point in the toroid where the two correction factors in Eq. C3 nearly
cancel. We then get an average field almost identical to the field
calculated at one effective field point pd. The error introduced by using
p.f instead of Eq. C3 is <1%, smaller than our uncertainty in the toroid
core dimensions.
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